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ABSTRACT 

The relationship between stock and recruitment in fish populations has been a subject of many stud- 
ies and some controversy, even to the extent that it has been questioned whether the two can be 
related in any meaningful way. The denial of a meaningful stock-recruitment relationship has profound 
and disturbing influences on the science of fish population dynamics and would seem to be some- 
thing of a policy of despair. A more constructive approach is to acknowledge the difficulties in estab- 
lishing a stock-recruitment relationship from the available information but still to seek the best 
interpretation of the data for the purposes for which the analysis is intended. Among the models that 
have been developed to fit stock-recruitment curves to data sets are the well-known Beverton-Holt and 
Ricker curves, both of which have two parameters. Less commonly used is the two-parameter model 
of Cushing. These two-parameter models have been generalized to give three-parameter models 
whose shape can be varied by settings of the parameters so as to model a wide range of observed 
stock-recruitment curves. In this paper these models and their underlying assumptions are described. 
Statistical methods of fitting the curves to data are reviewed with emphasis on the appraisal of the fit- 
ted curve, concentrating on the use for which the fitted curve is intended. Methods of choosing 
between different curves are discussed. The review is illustrated with examples of stock-recruitment 
data derived for various flatfish stocks. Among the questions that are discussed is whether there are 
any features of stock-recruitment relationships for flatfish that differentiate them from those of other 
species. Methods for testing the null hypotheses that there is no relationship between stock and 
recruitment and that recruitment in flatfish is not influenced by environmental or other biological fac- 
tors are described. Of the 20 flatfish stocks for which suitable stock and recruitment data are availa- 
ble, it is shown that in six cases there is a statistically significant relationship between stock size and 
recruitment. In one of these cases the relationship is significantly strengthened by the incorporation 
of an environmental measurement. Of the six significant stock-recruitment relationships one is 
strongly domed and three are the right-hand arm of a domed curve. In the other two cases average 
recruitment increases with increasing stock size, but it is not possible to differentiate between a 
domed and an asymptotic curve. This evidence of density-dependence in the stock-recruitment rela- 
tionships for flatfish is further strengthened by an examination of those cases in which the model of 
constant recruitment, independent of stock size, is not rejected. In eight of these stocks it is shown 
that the model of constant recruitment is favoured in preference to a model in which recruitment is 
directly proportional to stock size. Although recruitment may vary about a constant average level over 
a restricted range of stock size, it is not biologically possible for a population to sustain a high level of 
recruitment at low stock sizes. Thus in these eight cases there is further evidence of an underlying, 
but as yet unidentified, stock-recruitment relationship. 

1. INTRODUCTION 

The scientific value of fitting stock (S)-recruitment (R) 
curves to data has had something of a chequered his- 
tory, with alternating optimism and pessimism. 
Rijnsdorp (1994) gives references to authors who 
have called the process of fitting stock-recruitment 
curves into question. He also, however, refers to work 

(Tyler, 1992) giving a contrary opinion. There is no 
consensus in text books on fisheries dynamics. 
Wooton (1990) is doubtful about the value of fitting 
stock-recruitment relationships, expressing the view 
that although considerable ingenuity has been spent 
in fitting the relationships it takes an act of faith to 
take the resulting curves seriously. Rothschild (1986) 
also highlights the uncertainties, entitling his chapter 
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5 on the subject 'The recruitment paradox'. He does 
make clear, however, the fundamental importance of 
the concept of the stock-recruitment relationship. It is 
clear from all these arguments that it is the high 
degree of as yet unexplained variability often evident 
in estimates of recruitment that leads to the uncer- 
tainty. Hilborn & Waiters (1992) have pointed out that 
the search for stock-recruitment relationships con- 
tains traps for the unwary, and that not only should 
the curve be fitted, giving the average recruitment at 
any stock level, but also that the uncertainty associ- 
ated with the fitting process to actual data needs to be 
assessed. They give much helpful guidance to inves- 
tigators of stock-recruitment relationships and cer- 
tainly do not suggest that such relationships are of no 
value. 

Some doubts have been expressed about the sta- 
tistical assumptions made of the variability in recruit- 
ment that underpins simple regression models. Much 
ingenuity has been exercised in devising alternative 
methods of analysis and modifications to simple mod- 
els. Rothschild & Mullen (1985) outlined a non-para- 
metric approach assuming time variation in stock and 
recruitment behaviour. Moussalli & Hilborn (1986) 
described a method of analysis in which different 
stages of the life history are disaggregated, with a 
Beverton-Holt stock-recruitment relationship describ- 
ing each stage, but with parameters that vary in time. 
They criticized the use of a single overall stock- 
recruitment relationship. Evans & Rice (1988) argued 
that the probability distribution of recruitment, possi- 

bly changing with stock size, was of greater value 
than a single deterministic function of stock size. 

Waiters (1985, 1990) and Hall et aL (1988) argued 
that there was a bias inherent in stock and recruit- 
ment data and suggested a method of correcting for 
this bias in the estimation of the parameters of a fitted 
Ricker stock-recruitment equation. The reason for the 
bias is that high observed stocks are likely to be asso- 
ciated with lower recruitment than average because 
otherwise the stock levels would have risen further. 
Similarly low observed stocks are associated with 
higher than average recruitment. It is not precisely 
clear to what extent this effect is moderated by lags in 
time between recruitment and maturity to the stock 
and it is beyond the scope of this review to pursue the 
argument further. Until this question is properly 
resolved, therefore, it is safest to analyse the data 
without any prior manipulation, but perhaps to keep in 
mind the possibility of bias at the end points of the 
stock-recruitment curve. 

All of the data on flatfish stocks and recruitment 
analysed in this review are based on virtual popula- 
tion analysis (VPA). Some doubts have been 
expressed about the assumption of independence in 
the random component of any model describing vari- 
ation in successive recruitment data. Hild~n (1988) 
showed that in conditions of stable rate of exploitation 
and fishing mortality relative changes in stock levels 
are correctly identified, but that where changes occur 
in fishing pressure the choice of natural mortality 
affects perception of stock changes. Lapointe et aL 

TABLE 1 
Sources of data on flatfish stocks. The units for Pacific halibut are pounds.10 -6 both for stocks and 
stocks the units for stocks are tonnes-10 -3 and for recruitment numbers.10 -6. 

recruitment. For all other 

species Latin name stock number of assumed age 
observations at recruitment 

Pacific halibut Hippoglossus stenolepis 
Greenland halibut Rheinhardtius hippoglossoides 

megrim 
plaice 

Lepidorhombus whiffiagonis 
Pleuronectes platessa 

sole Solea solea 

yellowtail flounder Limanda ferruginea 

American plaice Hippoglossoides platessoides 
summer flounder Paralichthys dentatus 

North Pacific 42 
N.E. Arctic 19 
Iceland/Faroe 11 
Atlantic 7 
North Sea 33 
SkagerraldKattegat 12 
E. English Channel 11 
W. English Channel 15 
Celtic Sea 14 
Irish Sea 26 
North Sea 34 
E. English Channel 11 
W. English Channel 22 
Celtic Sea 19 
Irish Sea 19 
Biscay 11 
S. New England 17 
George's Bank 17 
E. North America 11 
E. North America 9 

source 

8 Hilborn & Waiters, 1992 
3 ICES, 1993a 
5 ICES, 1993b 
1 ICES, 1993c 
1 ICES, 1993d 
2 ICES, 1993d 
1 ICES, 1993d 
1 ICES, 1993c 
1 ICES, 1993c 
1 ICES, 1993e 
1 ICES, 1993d 
1 ICES, 1993d 
1 ICES, 1993c 
2 ICES, 1993c 
2 ICES, 1993e 
0 ICES, 1993c 
1 SAW, 1991 
1 SAW, 1991 
1 O'Brien et aL, 1992 
0 SAW, 1992 
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(1989) and Lapointe & Peterman (1991) came to sim- 
ilar conclusions for data based on VPA. 

The problem of fitting regression equations to data 
that have some autocorrelation in the random compo- 
nent is discussed by Judge et aL (1980). They 
showed that estimates of the parameters obtained 
from the ordinary least squares method are unbiased, 
but that the estimate of the variance of the random 
component is biased and thus the regression param- 
eters may be inefficiently estimated. The direction of 
the bias in the variance estimates depends on the 
nature of the autocorrelation. Judge et aL (1980) 
showed that where the autocorrelation is of first order 
and moderate in degree, the efficiency of estimates 
obtained from ordinary least squares is high com- 
pared with that of ~ more complicated method of fit- 
ting (generalized least squares) incorporating the 
covariance structure of the random component. A 
fully worked out methodology for dealing with auto- 
correlated random components is not available 
(Wetherill, 1986). Judge et aL (1980) gave further 
details of a range of methods. Wetherill (1986) men- 
tioned another point, that apparent autocorrelations 
may be caused by missing variables in the model. 
Since there is such uncertainty concerning the effects 
of autocorrelation, in this review models will be fitted 
using ordinary least squares. The possibility of auto- 
correlations in the residuals will, however, be tested 
formally, and any such significant effects will be 
reported. 

Despite this multitude of caveats it is shown, at 
least for most flatfish stocks, that traditional regres- 
sion assumptions can be validated. Following a care- 
ful appraisal of the different models a stock- 
recruitment relationship, with associated confidence 
bands, can be constructed in many of the cases for 
which data are available. It is not intended here to dis- 
cuss the uses to which such relationships might be 
put. It is shown that the null hypothesis that recruit- 
ment is independent of stock size for all fish stocks, 
implying that stock size is in no way helpful in explain- 
ing any of the variability in recruitment, should be 
rejected. Perhaps as more data become available 
and the reliability of such data increases in the future 
the predictive power of stock-recruitment relation- 
ships will improve. The incorporation of knowledge of 
other factors influencing recruitment offers further 
potential in the derivation of meaningful stock-recruit- 
ment relationships, and this issue is briefly discussed 
in this review. 

2. DATA 

Data on flatfish stocks were obtained from two main 
sources (Table 1). For European stocks, reports of 
the findings of working groups of the International 
Council for the Exploration of the Sea (ICES) were 
consulted (ICES, 1993a, 1993b, 1993c, 1993d, 
1993e). Data on some North American stocks were 

obtained from papers of the Northeast Regional 
Stock Assessment Workshops (SAW) of the North- 
east Fisheries Science Center (NFSC), Woods Hole 
USA (SAW, 1991, 1992). Data for Pacific halibut 
stocks were obtained from Hilborn & Waiters (1992). 
In a sense these data, generated by VPA calcula- 
tions, are not ideal for the purposes of an investiga- 
tion of stock-recruitment relationships. Estimates of 
both recruitment and stock size are obtained from the 
same table of catch-at-age data. Data on more recent 
year classes are less reliable than those of historically 
older cohorts because of the effects of estimation of 
terminal fishing mortality. Ideally, independent esti- 
mates of recruitment numbers and stock size should 
be used. Indeed, egg production should be estimated 
rather than spawning stock biomass. However, the 
VPA estimates are the best data currently available, 
and they will be accepted at their face value in this 
review. 

3. MATHEMATICAL MODELS FOR S-R 
RELATIONSHIPS 

There have been several recent reviews of stock- 
recruitment relationships, including those contained 
in most books on the dynamics of fisheries (Roth- 
schild, 1986; Cushing, 1988; Hilborn & Waiters, 
1992). Little would be gained by covering this ground 
again here, but some additional comments may put 
the models in perspective for this review. 
The assumed mathematical relationship is of the form 

R = f(S) 

where f(S) depends on a number of parameters that 
have to be estimated from any given data set so as to 
fit the relationship to the data. For the function to give 
a relationship that is consistent with reality, certain 
constraints have to be imposed. Firstly, the function 
should give non-negative values for R for all non-neg- 
ative S. Clearly negative stocks or recruitment have 
no meaning. Secondly, the function should not return 
a positive value for R for zero S, because if the stocks 
disappear so will recruitment. Thirdly, the function 
should not give infinite values of R, except possibly 
for infinite S. In this review a form of stock-recruitment 
relationship that satisfies these constraints will be 
called admissible. All the curves reviewed here can 
give inadmissible relationships for some values of the 
parameters, and this has to be borne in mind before 
using the results of analysis. 

The stock-recruitment relationships reviewed are 
listed in Table 2, together with brief descriptions of 
their characteristics. Although other forms of relation- 
ship have been used in stock and recruitment studies 
(see for example Parrish & MacCall, 1978; Elliott, 
1985), those chosen here are a representative selec- 
tion and include those most commonly used. The 
familiar Beverton-Holt (Beverton & Holt, 1957) and 



402 T.C. ILES 

t , -  

.o_ 
"5 
c. -  

"8 
t -  

O .  

0 
t -  

O 

~ 0  

._~ 
l -  

g 
f f l  

.~_ 

e~ 

e -  

~ 1 " ~  

g 

• ~ 

. . ~  ¢ -  

o ' ~  

._~ m 

"r_. x~ 

I..8= '~ t -  

::=~ e 

I 04 IC~. i 

~ • ,,.2 

t -  ' ' ~  o E , - ~  
o ~ , ' ~  ~ ~ e e l  
" ~  ~ o E  £,~1 

0 ~ 0 ~ " ~  ~ O ' , ~  ~ ' ' ~ 1  • c: o • ~ ~'E ~1 

"o ~ o~.~, m.,= 
o ~ .  ~ ._ >~ .-o.----o~ " o - 6  o - ~  

o /" = ® b g  '.-' ~ ~; ~t 

+ I 

I I 

0 0 ~. ^ 

4 3 ~  ~ 

I I 

i m l  

ii 
I I :  

° m  

0 

i 

4 3  

J 

T-  143 , , -  14~ 

o 

o g 
A 

. a  . d  

~ + 
43 

II II II 

O O 

._o ~ 
n- a3 o3 

O 
#. 

O3 

% 

ii 
£E 

O 
._1 

O3 

Ricker equations (Ricker, 1954) are both two-parame- 
ter models. Cushing's equation (Cushing, 1971) is 
also a two-parameter model, but this has been used 
less often in studies of stock and recruitment. In a 
sense this equation is potentially limited by the fact 
that it is unbounded as S increases• Its use at high 
stock levels is therefore questionable, but in practice 
it may be a useful indication of the nature of the 
stock-recruitment relationship over the observed 
range of stock size. As with any fitted equation, care 
has to be taken in extrapolating beyond the limits of 
the data. 

The Shepherd equation (Shepherd, 1982) is a gen- 
eralization of the Beverton-Holt equation with the 
addition of a third parameter that allows it to be either 
domed or unbounded, with an asymptotic shape as 
an intermediate case, depending on the value of this 
third parameter• The Saila-Lorda equation (Saila et 
aL, 1988; Mills & Hurley, 1990) is a generalization of 
the Ricker equation. The third parameter here allows 
more variety in shape of curve than the Ricker, includ- 
ing the possibility of a convex region at low stock 
sizes (with ,/>1) representing depensatory mecha- 
nisms. Of the equations reviewed here the only other 
that can be convex at low stock sizes is the Cushing 
(with y>l),  but then the values of R at high S may be 
too large to be representative. 

Those equations defined by only two parameters 
are relatively inflexible. For example, the shape of the 
Ricker equation is determined by the single point on 
the stock-recruitment graph at which recruitment is a 
maximum• It can be seen from Table 2 that the stock 
size S corresponding to maximum recruitment fixes 
the parameter 13, and then the value of maximum 
recruitment itself fixes co. In order to accommodate 
the data in the region of the dome, therefore, the 
Ricker equation may be a poor model at extreme 
stock sizes. Both the Beverton-Holt and Cushing 
equations are determined by any two points on the 
stock-recruitment plot (to be admissible the former 
requires that the ratio of R to S be smaller at the 
higher value of S). Neither of these curves can be 
used to represent a domed relationship• The addition 
of the third parameter in the Shepherd and Saila- 
Lorda equations gives greater flexibility, although for 
actual data it is often found that the best-fitting equa- 
tion is inadmissible. There has to be a balance 
between the flexibility in potential shapes allowed by 
the third parameter and the difficulty in identifying 
suitable and admissible values for the parameters 
when the data are scattered• 

4. STATISTICAL ASSUMPTIONS 

In this paper an approach based on parametric mod- 
els for theoretical stock-recruitment relationships is 
outlined. The scatter of data around these theoretical 
curves is allowed for by including an additional ran- 
dom component in the model that describes devia- 
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tions of R from the curve. The model relating R to S 
then becomes 

R = f (S) + 

The random component ~ of this model is often called 
the error (Kendall & Buckland, 1982). This word will 
not be used in this review to avoid possible confusion 
between errors in estimation and other unexplained 
sources of variation. ~ is assumed here to encom- 
pass not merely genuine errors in R, in the sense that 
the estimation of R is not equal to the true value, but 
also the combination of real effects both abiotic and 
biotic that cumulatively cause the observed R to differ 
from the central value defined by the mathematical 
model. 

Implicitly the effects comprising the random compo- 
nent of the model are assumed to be additive, and the 
conventional assumption is then that their distribution 
is normal (Gaussian). Hennemuth et aL (1980) 
showed that the distribution of recruitment in fish 
stocks was better represented by a log-normal distri- 
bution than a normal, though their conclusions were 
based on an analysis of gross variation in R not devi- 
ations from a stock-recruitment curve. Garrod (1982) 
came to the same conclusion based on the evidence 
of deviations of R from the geometric mean of R for a 
number of fish stocks. He also showed that residuals 
from a fitted Shepherd curve after logarithmic trans- 
formation of the data were normally distributed (Gar- 
rod, 1983). Some findings from investigation of some 
flatfish stocks are described in this paper. In some 
cases the calculated residuals from fitted stock- 
recruitment curves indicate that the random compo- 
nent of the model should be represented by a log-nor- 
mal distribution. In all remaining cases no clear 
indication is given whether the normal or log-normal 
model is the more appropriate. Over a limited range 
of R, InR is closely approximated by a linear function 
of R so in cases where the deviations of R from the 
central value are limited in range, as is often the case 
for flatfish stocks, it is not surprising that it is not pos- 
sible to distinguish between the normal and log-nor- 
mal distributions. The log-normal assumption 
considerably simplifies the fitting process and in all 
cases the final suggested stock-recruitment relation- 
ship will carry the assumption that the random com- 
ponent of the model is log-normally distributed. The 
relationship between R and S is then: 

In R= In f(S) + 

where the random component ~ is assumed to be 
normal. Such a relationship implies that deviations of 
R from the central value are represented by multipli- 
cative effects. 

Another assumption that is made in conventional 
regression modelling of the stock-recruitment process 
is that random variation is associated with the estima- 

tion of R, but not of S. Almost certainly this is not the 
case, but if it can be shown that unexplainable varia- 
tion in R is considerably greater than that in S, then 
the simple regression approach is acceptable for fit- 
ting the curves to the data. As has already been men- 
tioned, the data are taken from VPA studies. Since S 
comprises a number of year classes, but R is derived 
from a single cohort it is likely that this assumption will 
be acceptable. However, a further appraisal will be 
made before fitting is attempted. 

No appraisal of variation in R or S can be made 
without some external information. The departure of a 
particular point on the stock-recruitment scatter-plot 
could be explained by either variation in R or in S, or 
indeed in both. A suggestion for testing whether it is 
reasonable to assume that it is R that is subject to 
variation is derived from collaborative work (Beverton 
& lies, in prep.). This is to make use of the fact that 
the data on R and S are both time series. The sug- 
gestion is that any deviation from a time trend fitted to 
the data represents, mainly, errors in estimation 
together with other unexplainable sources of varia- 
tion. Thus if it can be shown that variation about the 
trend line (in time) for InS is small in comparison with 
that for InR, then the association of the random com- 
ponent ~ with InR rather than S can be justified. 

At present this method of analysis can only be sug- 
gested as an approximate guide. The fitting of a trend 
curve to time series data is a subjective process. 
Although smoothing methods have been devised that 
do not make any parametric assumptions (Tukey, 
1977; Velleman & Hoaglin, 1981), they do incorporate 
different amounts of averaging and are still not com- 
pletely objective. It is unlikely that a completely objec- 
tive trend fitting method will ever be devised. Where 
only a short run of data is available, time trends will 
not be apparent, and the method of checking varia- 
tion may be limited. No formal statistical test of resid- 
ual variation around these trend curves can be made 
at present since no expression appears to be availa- 
ble for the theoretical variance of the trend curve 
itself. Nevertheless, the variance about the trend 
curve for InR in flatfish stocks is generally several 
times greater than for InS, and this is a strong indica- 
tion that it is InR that is more subject to unexplained 
variation than InS (Table 3). 

Diagnostic checks after calculating the fitted 
regression equation are strongly recommended to 
justify the statistical assumptions that are made about 
the random component E of the stock-recruitment 
model. Procedures for making these checks are now 
standard in linear regression (Belsley et aL, 1980; 
Cook & Weisberg, 1982; Fry, 1993). Amongst the 
most useful are the Durbin-Watson test for independ- 
ence and the normal probability plot of the residuals 
(Fry, 1993), also known as Filliben's test, to check for 
normality. Further checks are made for outliers, 
observations whose deviation from the usual is 
extreme, and influential data points. Checks for these 
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TABLE 3 
Measurements of variation for flatfish stocks. For more information see text. For units of measurement of S and R see Table 
1. n is the number of observations. SD 1 is the standard deviation of the data (after logging). SD 2 is the standard deviation of 
the differences between the logged data and the trend curve fitted through the logged data. 

InS InR 

species stock n SD I SD 2 SD 1 SD 2 

Pacific halibut Pacific 42 .34 .01 .20 .10 
Greenland halibut N.E. Arctic 19 .44 .05 .10 .07 
Greenland halibut Icelandic 11 .22 .13 .17 .04 
megrim Atlantic 7 .14 .08 .29 .16 
plaice North Sea 33 .14 .04 .42 .31 
plaice Skagerrak/Kattegat 12 .30 .09 .47 .23 
plaice E. English Channel 11 .30 .09 .37 .28 
plaice W. English Channel 15 .34 .06 .53 .35 
plaice Celtic Sea 14 .47 .10 .53 .42 
plaice Irish Sea 26 .34 .09 .34 .26 
sole North Sea 34 .48 .20 .82 .73 
sole E. English Channel 11 .18 .07 .30 .30 
sole W. English Channel 22 .32 .08 .39 .25 
sole Celtic Sea 19 .23 .09 .24 .14 
sole Irish Sea 19 .23 .11 .65 .49 
sole Biscay 11 .20 .04 .10 .07 
Yellowtail flounder S. New England 17 .73 .29 1.17 .83 
Yellowtail flounder George's Bank 17 .74 .22 1.07 .54 
American plaice E. North America 11 .73 .05 .43 .29 
Summer flounder E. North America 9 .38 .20 .52 .36 

are based respectively on the residuals or studen- 
tized residuals (Fry, 1993) and the leverages, often 
denoted by h i or HI (Fry, 1993). All of these test statis- 
tics and diagnostics are routinely available in statisti- 
cal packages containing a linear regression fitting 
routine. 

In nonlinear regression similar procedures have 
been suggested (Ross, 1990), but this is an area of 
current research interest in statistics (Cook & Tsai, 
1985; Cook, 1986; Ross, 1987). Not all those statisti- 
cal computer packages containing a non-linear 
regression routine enable studentized residuals and 
leverages to be easily obtained, but the SAS package 
used in the data analysis for this review does com- 
pute these statistics (SAS, 1987). 

5. METHODS 

The essential of the approach suggested for investi- 
gating the viability of a theoretical stock-recruitment 
curve in fitting a data set is to start with a simple 
model and progressively make it more complicated in 
the hope that the greater flexibility of shape allowed 
by the more complicated model gives a more satis- 
factory fit to the data. The addition of further parame- 
ters is bound to improve the fit of the curve to the data 
and it is necessary to test if the improvement is statis- 
tically significant. If one model is a special case of 
another in the sense that it can be obtained by special 
settings of one or more parameters, a so-called 

nested model, there is an established procedure for 
determining if the more complicated model is to be 
preferred. The procedure is the same as that used in 
variable selection in multiple regression (Fry, 1993) 
and is based on the decrease in unexplained (resid- 
ual or error) sum of squares when the more compli- 
cated model is fitted. 

Methods of choosing between models that are not 
special cases of one another, non-nested models, are 
not so well established, though some work has been 
done on this problem based on an original idea of 
Cox (1961). Some of this work is reviewed in White 
(1983). At present the techniques have not reached 
the stage where they are routinely available, and they 
are not available in standard statistical packages. 
Therefore, in this review, where comparison of mod- 
els has to be made it will be done on the basis of an 
informal comparison of the error sums of squares of 
the two models. 

Rothschild (1986) discusses the biological back- 
ground of stock-recruitment relationships. Conceptu- 
ally the simplest form of model is the case of simple 
linear proportionality of R with S: 

R =  mS 

The biological interpretation of the model is that mor- 
tality is density independent, with neither compensa- 
tion nor depensation. The constant ~ depends on the 
scale of measurement chosen for R and S and it is 
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convenient to investigate as a null hypothesis that the 
stock-recruitment relationship is a line of the above 
form passing through the geometric mean of the data: 

InR = I n R - I n S +  InS 

The value Incc = InR-  InS is the least-squares esti- 
mate of the parameter ~, if the log-normal error com- 
ponent model is assumed (Appendix 1). Cushing 
(1971) generalized this simple model by introducing a 
power of S on the right-hand side, allowing the stock- 
recruitment relationship to be curved: 

R =  ~S ~ 

After logarithmic transformation this model becomes: 

InR = Incc+yInS 

so that simple linear regression methods can be used 
for fitting and testing the model. The line of constant 
proportionality is a special case of the Cushing 
model, with ~,=1 and Incc= In R -  In S so the hypothe- 
sis that this model fits the data as adequately as the 
Cushing model can be tested by formal statistical pro- 
cedures. Note that no fitting of parameters is needed 
for the line of constant proportionality since these are 
completely determined in the equation above. 

The Saila-Lorda model includes an extra term on 
the right-hand side of the equation: 

R = ccS~e -I~s 

and after logarithmic transformation this becomes: 

InR = In~-13S+,/ InS 

Multiple regression enables the parameters to be 
estimated and the goodness-of-fit of the model to be 
appraised. The Cushing equation is a special case of 
this model, with ~=0. Thus a formal statistical test can 
be done to determine if the Saila-Lorda equation is a 
significantly better fit to the data than the Cushing. 
The Ricker equation 

R = ~Se -~s is transformed to: 

InR = Inoc-13S+ InS 

This is also linear in the parameters, and these can 
be estimated by regressing InR/S on S. There 
appears to be some confusion in the literature about 

the validity of this method of fitting. Hilborn (1985) 
showed that the method gives unbiased estimates for 
the parameters. He did not, however, point out that 
some of the associated statistics from the regression 
calculations, particularly the coefficient of determina- 
tion R 2 and the F statistic, are incorrect and poten- 
tially misleading. Stefansson (1992) pointed out that 
the regression procedure could be misleading since 
random but unrelated stock and recruitment could 
give an apparently significant relationship between 
InR/S and S simply because of the presence of S on 
both sides of the equation. Beverton & lies (1992b) 
gave an example of such an apparently significant 
relationship derived from artificially obtained random 
data. This conclusion would, however, be based on 
an incorrect interpretation of the value of R 2. If the 
assumptions of independent identically distributed 
normal random components in InR are valid and if a 
Ricker model is appropriate for the data, then a 
regression of InR/S on S gives unbiased estimates for 
the parameters of the Ricker equation, the correct 
error sum of squares and the correct confidence inter- 
vals for the parameters. For further details see 
Appendix 2. If it is not certain that the Ricker model is 
correct, a wise precaution is to make a comparison 
with other models using the error sum of squares as a 
criterion. 

The Ricker equation is a special case of the Saila- 
Lorda (with ~,=1), and the statistical significance of the 
improvement in prediction obtained by the inclusion 
of the third parameter can therefore be formally 
tested by comparison of the difference in error sum of 
squares with the error mean square. The Ricker 
equation is not, however, related to the Cushing 
equation so this formal procedure cannot be used. 
Similarly a model of constant recruitment is not a spe- 
cial case of the Ricker equation and this can lead to 
some difficulties in interpretation of statistical tests 
(see Appendix 2). 

Both the Beverton-Holt and Shepherd equations 
need a nonlinear regression method to be used for fit- 
ting to data; they are not linear in the parameters after 
logarithmic transformation. The Beverton-Holt equa- 
tion is a special case of the Shepherd (with c=1), so 
the formal statistical test based on differences in error 
sums of squares can be done to determine if the 
Shepherd equation is significantly better than the 
Beverton-Holt equation. It is not possible to make for- 
mal tests of either model against the Cushing, Ricker 
or Saila-Lorda equations. 

As is the case with the Ricker equation, the Bever- 
ton-Holt and Shepherd equations do not reduce to a 
model of constant R (or InR) by any setting of the 
parameters. For that reason no formal test can be 
performed against this model as a null hypothesis. All 
three models, Ricker, Beverton-Holt and Shepherd, 
can, however, be tested against the null model of the 
line of constant proportionality discussed above, the 
line passing through the origin and the geometric 
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mean of the data. 
The first step in determining if there is any relation- 

ship between stock and recruitment is to fit a simple 
model to check whether there is a significant upward 
or downward trend to R with S. The simplest model is 
Cushing's and this is examined first. An upward trend 
(InR linear in InS with positive slope) indicates that 
the data are on the left-hand arm of a conventional 
stock-recruitment relationship and that it may be 
worth pursuing another model to find a better fitting 
curve. A downward trend (negative slope of InR with 
InS) is not itself an admissible stock-recruitment rela- 
tionship, but could indicate that the data are on the 
right-hand arm of a domed stock-recruitment curve, 
and thus supercompensation can be identified. The 
null hypothesis that recruitment is directly propor- 
tional to stock levels should be tested against the 
Cushing alternative. 

The next step, even where the first fails to identify 
statistical significance, is to determine if a dome- 
shaped relationship is indicated. Because formal sta- 
tistical tests can be done, it is most convenient to 
investigate the Ricker and Saila-Lorda equations at 
this stage. Difficulties may be experienced if the data 
suggest that a convex function should be fitted to the 
data. Although the Saila-Lorda (and also Shepherd) 
equation can be convex and decreasing over a range 
of stocks to the right of the maximum, the best-fitting 
equations are sometimes inadmissible. This indicates 
that some other form of stock-recruitment curve, not 
described in this review, should be used or some 
additional external factors should be included in the 
model. 

The third step is to investigate whether the Bever- 
ton-Holt equation or its generalization, the Shepherd 
equation, gives the best fitting model. This deter- 
mines whether the data rise to an asymptote, with no 
significant indication of a dome. Since neither model 
is a generalization of the Cushing, Ricker or Saila- 
Lorda family of curves, only informal comparisons of 
the error sums of squares can be made to help in 
deciding which model best describes the data. The 
evidence for an asymptote can, however, be formally 
tested by comparison of Beverton-Holt and Shepherd 
equations. 

The final choice of model is thus not completely 
straightforward, because of the limitations of the for- 
mal statistical tests that can be done. However, it is 
almost always the case that one particular model 
emerges as the best fit. The sense in which a model 
is selected is that 1. it has an error sum of squares 
that is at least close to the minimum of all models fit- 
ted, that 2. it has admissible parameter values all of 
which are significantly different from 0, and 3. it com- 
plies with the principles of Occam's razor in that it is 
the simplest plausible fit to the data. Once this best 
curve is identified it is useful also to calculate confi- 
dence bands for the curve. The curve and the associ- 
ated confidence bands are then displayed on a stock- 

recruitment diagram. 
A method of calculating these confidence bands for 

models fitted by linear regression using statistics rou- 
tinely calculated by standard statistical packages is 
given by Fry (1993). The essence of the method is to 
multiply the estimate of the standard deviation of the 
prediction at stock level S by a suitable factor (dis- 
cussed below) to give upper and lower limits for the 
confidence interval of the prediction of R at S. The 
same calculation is repeated for a range of values of 
S. The upper limits of these intervals are then joined 
up to give the upper edge of the confidence band and 
similarly the lower limits give the lower edge. It is con- 
venient to use the observed values of S used for fit- 
ting the curve for these calculations since the 
necessary statistics are usually easily obtained from 
standard statistical packages. 

The variance of the prediction at the ith observed 
value S i of stock size is simply the leverage h i multi- 
plied by the error mean square s 2. Where a statistical 
package is used for fitting the model both of these 
statistics are usually easily available. The statistic s 2 
is obtained from the analysis of variance table used 
for testing the model. The leverages h i are now in 
common use as diagnostic statistics, so these also 
are usually calculated by the package. The use of lev- 
erages as diagnostics is described, for example, by 
Fry (1993) and Rawlings (1988). The latter gives a 
formula, in matrix notation, for h i . The calculation of 
leverages in non-linear regression is slightly more 
complicated. Amongst those packages that have a 
routine for fitting non-linear regression equations, 
SAS has an option for calculating leverages. The 
manual (SAS, 1987) gives the formula. Seber & Wild 
(1989) give a formula for the calculation of the hat 
matrix, and the leverage h i is the ffh diagonal element 
of this matrix. 

The factor by which the standard deviation of the 
prediction is multipled to give the confidence interval 
is often chosen to be a Student's t percentile with 
degrees of freedom equal to the number of data 
minus the number of parameters in the stock-recruit- 
ment model. The theory underlying the use of this 
percentile shows that it gives a confidence interval 
with the correct confidence coefficient only if it is used 
for a prediction at a single value of S. One way of 
obtaining accurate simultaneous intervals for a range 
of values of S is Scheffe's method. In this method the 
factor is 

qlpFp, n_ p 

where p is the number of constants in the model, n 
the number of data and Fis the appropriate percentile 
of the F distribution. Thus the confidence interval for 
the prediction /~i of recruitment at stock level S i is: 
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Ri+ ,fpFp, n_pS2hi 

Miller (1981) discussed the calculation of simultane- 
ous confidence intervals in linear regression. The for- 
mulae given above was derived for the case of linear 
regression, but the same formula is used as an 
approximation in nonlinear regression. The approxi- 
mation depends on the extent to which the linear 
approximations used to solve the non-linear regres- 
sion problem are accurate. 

One of the difficulties of using non-linear regression 
methods is that convergence to the globally optimum 
solution is not guaranteed, and it is important to have 
initial estimates of the parameters that are close to 
those giving the equation of best fit. For the Beverton- 
Holt equation good starting values can be obtained by 
regressing S/R on S. The intercept of this regression 
is an estimate of the parameter b and the slope is an 
estimate of a. The values of a and b from the best-fit- 
ting Beverton-Holt equation together with a value for 
the third parameter c slightly different from 1 (c = 1.5) 
often gives convergence for the Shepherd model. 
Parameter estimates obtained from fitting the models 
after a logarithmic transformation are usually easy to 

obtain. For the Cushing, Ricker and Saila-Lorda 
equations no initial values are needed since the mod- 
els are linear after logarithmic transformation. The 
estimates from these are then good initial values if fits 
to the untransformed versions of the model are inves- 
tigated. 

6. INCORPORATION OF ENVIRONMENTAL 
VARIABLES IN THE S-R RELATIONSHIP 

If it is felt that environmental factors may influence the 
recruitment process it is prudent to investigate this 
possibility by incorporating the factors in the model. In 
this review attention will focus on those factors that 
can be quantified, and how they can be included in 
the model in the form of an additional component on 
the right-hand side of the model. Beverton & lies 
(1992b) described some aspects of the incorporation 
of such additional components in the model. Fargo 
(1994) also discusses models including both stock 
and environmental variables. 

Environmental variables can only moderate recruit- 
ment, they cannot themselves cause recruitment, 
only stocks can do that. Thus a formulation that 
allows positive recruitment to be predicted by the 
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Fig. 2. Time series of logarithms of recruitment R and stock 
size S for western English Channel plaice. 

that will be investigated here. These models allow a 
simple statistical test to be made that the environ- 
mental variable has no significant effect on recruit- 
ment when allowance is made for the changing stock 
size since the null hypothesis q=0 or r=0 can be 
tested using the change in the error sum of squares 
as a criterion. 

Hilborn & Waiters (1992) have counselled caution 
in the incorporation of environmental variables in the 
stock-recruitment model using this approach. They 
have suggested that judicious choice of an environ- 
mental variable from many possibilities can be used 
to explain inconvenient departures from the stock- 
recruitment curve. This may be the case, but it is also 
true that a failure to take into account those variables 
that for biological reasons are known to affect recruit- 
ment will lead to models that are poor in explaining 
observed variation. 
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environmental variable alone, with stocks equal to 
zero, is inadmissible in stock-recruitment investiga- 
tions. Thus additive functions of the type: 

R = f(S) + g(E) 

where E is some function of environmental variables, 
are inadmissible. A model of the kind: 

R = f(S)" Eq 

or, in logarithmic form: 

InR = In f (S)  + qlnE 

is a simple admissible form of stock-recruitment rela- 
tionship incorporating a single environmental varia- 
ble, and it is models of this form or of the form: 

InR = In f(S) + rE 
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Fig. 3. Normal score plots for studentized residuals from 
Saila-Lorda equations fitted to IogR (top) and R (bottom) for 
the western English Channel plaice stock. 
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TABLE 4 
Error sums of squares for western English Channel plaice. For explanation see text. 

name df ss ms F p 

total 14 3.8919 - 
proportional line P 14 3.7684 
Cushing C 13 3.4162 0.2628 1.81 0.201 
Ricker R 13 3.1998 0.2461 
Saila-Lorda SL 12 2.2497 0.1875 4.38 0.037 
Beverton-Holt BH 13 3.3155 0.2550 
Shepherd Sh 12 2.3970 0.1998 - 

C-SL 1 1.1665 1.1665 6.22 0.028 
R-SL 1 0.9501 0.9501 5.07 0.045 

BH-Sh 1 0.9185 0.9185 4.60 0.053 

P-C 1 0.3522 0.3522 1.34 0.268 
P-R 1 0.5686 0.5686 2.31 0.153 
P-SL 2 1.5187 0.7594 4.05 0.045 
P-BH 1 0.4529 0.4529 1.78 0.206 
P-Sh 2 1.3714 0.6857 3.43 0.066 

7. EXAMPLES 

7.1. WESTERN ENGLISH CHANNEL PLAICE 

This data set has been chosen for the first example 
since there is strong evidence of a dome-shaped rela- 
tionship (see Fig. 1). It is therefore a good illustration 
of the step-by-step approach outlined. Fig. 2 gives 
time-series plots for InR and InS for this stock. It is 
clear from this plot that deviations of InS from its trend 
line were small compared with those for InR. The 
standard deviations of the differences from the trend 
line were 0.064 for InS and 0.353 for InR, so there is 
considerable evidence from these data that errors in 
measurement of R are large in comparison with those 
of S, and that therefore application of the models 
described in Section 4 is reasonable. 

Table 4 gives a summary of all of the error sums of 
squares and associated statistical tests. All the mod- 
els were fitted to the logarithms of recruitment, for 
reasons discussed below. It is not suggested that all 
these test statistics need to be formally calculated 
and reported in every investigation; the complete 
details for this data set are included for illustration 
only. 

The first part of the table gives the error sums of 
squares for all models together with the standard F- 
test for the null hypothesis that recruitment is con- 
stant in the two cases where this is appropriate 
(Cushing and Saila-Lorda). Clearly the Saila-Lorda 
model gave the smallest error sum of squares, and 
this was significantly different from the error sum of 
squares for the null model of constant recruitment 
(p=0.037). The estimates of the parameters of this fit- 
ted equation and their standard errors are included in 

Table 8. All parameters were significantly different 
from zero. This confirms that a domed relationship is 
indicated for these data. Although the Shepherd 
equation was almost as successful in explaining 
these data as the Saila-Lorda, on the basis of the 
error sum of squares, the parameter c was estimated 
as 9.76 with standard error 10.25, so this equation 
would give similarly close fits for a wide range of 
parameters. This is not important if all that is sought is 
the set of parameters giving the closest fit, but would 
influence any interpretation of the parameters. 

The next part of Table 8 using the methods outlined 
in Fry (1993) shows that the Saila-Lorda equation 
provided a significantly better fit than both the Cush- 
ing and Ricker equations. In both these comparisons 
the denominator for the F test is the error mean 
square for the Saila-Lorda fit. The next line shows 
that the Shepherd equation had an error sum of 
squares that was very close to being significantly 
smaller than that of the Beverton-Holt equation 
(p=0.053). This suggests that the hypothesis of an 
asymptotic relationship is somewhat questionable. 
Finally all of the equations are compared with the pro- 
portional line model. The correct denominators for 
these tests are the mean square for the model with 
which the proportional line is being compared. It can 
be seen that the Saila-Lorda model gave a significant 
improvement in error sum of squares (p=0.045). 

Overall, therefore, there is little doubt that a dome- 
shaped relationship is indicated by these data, and 
that the Saila-Lorda equation gives the best fit. No 
outliers or lever points are indicated, using as criteria 
for unusual observations those given, for example, in 
Fry (1993). The curve and associated Scheff6 confi- 
dence bands are included on the stock-recruitment 
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TABLE 5 
Error sums of squares for North Sea plaice. For explanation see text. 

name df ss ms F P 

total 32 5.7326 
proportional line 32 7.7251 
Cushing 31 5.0809 
Ricker 31 5.0833 
Saila-Lorda 30 5.0786 
Beverton-Holt 31 5.0951 
Shepherd 30 5.0806 

temperature alone 31 4.8655 
temperature + Ricker 30 4.2761 
difference 1 0.5894 

phosphate alone 31 5.2599 
phosphate + Ricker 30 5.0304 
difference 1 0.2295 

temperature + phosphate + Ricker 29 4.2747 

0.1639 3.98 0.055 
0.1640 
0.1693 1.93 0.162 
0.1644 
0.1694 

0.1570 5.52 0.025 
0.1425 
0.5894 4.14 0.051 

0.1697 2.79 0.105 
0.1677 
0.2295 1.37 0.251 

diagram (Fig. 1). 
Fig. 3 gives the normal score plots for the studen- 

tized residuals of this Saila-Lorda equation fitted to 
InR and R, respectively. It is evident that there was 
somewhat greater curvature in the residuals from the 
fit to R, indicating that a log-normal model was more 
realistic than the usual normal model, and that fits 
should be made to the logarithmically transformed 
data. 

7.2. NORTH SEA PLAICE 

This example has been chosen since data are availa- 
ble for two environmental variables that it has previ- 
ously been suggested may influence recruitment. 
These are the February temperatures at Den Helder, 
The Netherlands (Zijlstra & Witte, 1985; Van der 
Veer, 1986), and the phosphate loads in the river 
Rhine (Boddeke & Hagel, 1994). 

Ignoring the environmental data for the moment, an 
analysis of the stock and recruitment data (illustrated 
in Fig. 1) can be done following the outlines illustrated 
in western English Channel plaice. Errors can be 
assumed to be associated with R rather than S (see 
Table 3 for confirmation), but the conclusions from the 
attempts to fit different models are somewhat differ- 
ent. Details of the error sums of squares of the fitted 
models are given in Table 5. There was little with 
which to differentiate between them using the error 
sums of squares, but the parameter values of the 
best-fitting equations indicated that both the Saila- 
Lorda and Beverton-Holt fits were inadmissible, 
because of negative parameter values. The coeffi- 
cient ~, of the best-fitting Cushing equation was also 
negative and therefore inadmissible. The data indi- 
cated that recruitment was generally slightly smaller 

at the larger stock sizes. In fitting the Saila-Lorda 
equation it was evident that there was a difficulty with 
multicollinearity of the predictor variables S and InS. 
Over the rather restricted range of S observed for this 
population S and InS were very close to being linearly 
related. Therefore and because of the multicollinear- 
ity, it was not possible to identify a value for the 
parameter ~, of the Saila-Lorda equation. The (admis- 
sible) Ricker and (inadmissible) Cushing equations 
were informally little different in predictive power, hav- 
ing very similar error sums of squares. The Cushing 
equation had a parameter ~ that was close to being 
statistically different from zero (~=-0.99, standard 
error 0.49, p=0.055). Tentatively therefore it is rea- 
sonable to suggest that these data were on the right- 
hand arm of a domed stock-recruitment relationship, 
probably best described by a Ricker equation. This 
equation and the associated confidence bands are 
plotted in Fig. 1. The suggestion of a domed stock- 
recruitment relationship has to be tentative because 
the significance level is not low, and Waiters (1985, 
1990) suggested bias in stock-recruitment data would 
lead to a downward tilt of the fitted curve. 

It was evident from the plot and can be shown by 
an analysis of the studentized residuals that there are 
two outliers, the 1963 and 1985 year classes. Both 
years were preceded by cold winters and in both 
cases the recruitment was exceptionally good. An 
analysis of the leverages indicated that the 1967 year 
class is an influential point, with high leverage. This 
single observation had a disproportionate influence 
on the conclusion that the data are on the right-hand 
arm of a stock-recruitment relationship. In fact the 
statistical significance of the parameter ~, of Cushing's 
equation depended on the two years, 1967 and 1968, 
in which stocks were highest. 
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Fig. 4. Recruitment in North Sea plaice plotted against Feb- 
ruary temperature at Den Helder, The Netherlands (top) and 
phosphate loads in the river Rhine (bottom). 

The bottom half of Table 5 gives error sums of 
squares and statistical tests associated with the inclu- 
sion of environmental variables in the prediction 
equation for recruitment. Fig. 4 shows that recruit- 
ment was negatively correlated with the February 
temperature at Den Helder. Table 5 shows the F ratio 
for the test of the null hypothesis that the slope of this 
relationship is zero. The p-value was small (p=0.025), 
so this hypothesis is rejected. Moreover there was 
some improvement in the Ricker stock-recruitment 
equation when temperature was included in the equa- 
tion (p=0.051). 

The relationship of recruitment to phosphate load is 
shown in Fig. 4. This relationship was not significant 
(p=0.105), but perhaps close enough to warrant fur- 
ther work. The difference between the error sum of 
squares for the Ricker model and that of the same 
model with phosphate included was not statistically 
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Fig. 5. Stock size in North Sea plaice plotted against phos- 
phate loads in the river Rhine. 

significant (p=0.251). Thus it is possible that the weak 
relationship of recruitment with phosphate was gener- 
ated by a statistical relationship between stock levels 
and phosphate. Fig. 5 shows the scatter plot of these 
data. There was a strong negative correlation 
(13<0.0005) between stock size and phosphates. It is 
not suggested that there can be biological reasons for 
this correlation; it is more likely that it can be 
explained by coincidental time trends. Neither was 
the correlation strong enough on the basis of the vari- 
ance inflation factor (see Fry, 1993, p. 158, but see 
footnote*) to indicate problems of multicollinearity in 
the multiple regression. However, the apparent rela- 
tionship between recruitment and phosphate (or any 
suggested relationship between phosphate and the 
recruitment success rate R/S) is questionable in view 
of the statistical association between stock size and 
phosphate loads. 

Stock size was not, however, related statistically to 
temperature, and the fact that the Ricker equation 
remained a plausible explanation for variability in 
recruitment even when allowance was made for tem- 
perature strengthens the conclusion that the dome- 
shaped stock-recruitment relationship is genuine for 
this stock. 

7.3. PACIFIC HALIBUT 

This data set, illustrated in Fig. 1, has been included 
because although the search for a viable stock- 
recruitment curve is fruitless, it shows that for some 
data a time series model may contain useful informa- 

*There is an error in this author's chapter in Fry's book on 
page 158. The variance inflation factor should be defined as 
the reciprocal of (1-R2). 
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Fig. 7. Time series plot of the logarithm of recruitment for 
Pacific halibut together with fitted curve of period 19 years 
and 95% confidence bands. 

Fig. 6. Autocorrelation function for the logarithm of recruit- 
ment for Pacific halibut. Time lag in y. 

tion. Table 6 summarizes the error sums of squares 
for the different models. Although the Saila-Lorda 
equation had an error sum of squares that indicated 
that the parameter values were strongly significantly 
different from zero, the estimate of the parameters [3 
and 3' were both negative, so the equation was inad- 
missible. Although this equation can in principle be fit- 
ted to the data, it could not be further interpreted as a 
stock-recruitment relationship other than giving an 
estimate of average recruitment over the range of 
observed stocks. The best-fitting Beverton-Holt and 
Shepherd equations were similarly both inadmissible. 
The error sum of squares for the best-fitting Ricker 
equation was greater than the total sum of squares, 
indicating that this was not a plausible model for 
these data. It is in such cases that care has to be 
exercised in interpreting the significance tests for indi- 
vidual parameters. The parameters Inc~ and ~ of the 
Ricker equation were estimated as 0.40 and 0.0072, 
respectively, with standard errors 0.12 and 0.0007 
and associated p values (for the null hypothesis that 
each is zero) of 0.001 and <0.0005. However, the null 
model for the Ricker equation was the line of propor- 
tionality and, as can be seen from the very large error 

sum of squares for this model, this was completely 
implausible for these data. These significance tests 
therefore did not indicate that a Ricker model should 
be fitted to these data. 

The Durbin-Watson test for these data, whichever 
equation is fitted, indicated strongly significant auto- 
correlation at a lag of one year. The complete auto- 
correlation function for InR is plotted in Fig. 6 and not 
only does this show that the data were autocorre- 
lated, but also that there was a periodic variation of 
recruitment in time with a period of about 19 y. The 
curves plotted in Fig. 7 are a sine/cosine curve with 
period 19 y, together with a calculated confidence 
band. This confidence band does not, however, take 
into account errors in the estimation of the period of 
the fitted equation. Hilborn & Waiters (1992) sug- 
gested that recruitment to the Pacific halibut stock is 
strongly periodic though the data they analysed are 
not quite the same series as that presented in this 
review. The period of their suggested relationship is 
very close to 19 y. Cabilio et  aL (1987) showed that 
for a number of fish stocks in the New England-Fundy 
and Grand Banks areas off the east coast of North 
America there was a strong link between the 18.6 y 
nodal cycle of the tides and catches. These periodic 
patterns are not stock-recruitment relationships in the 
classical sense. Presumably the periodicity is caused 

TABLE 6 
Error sums of squares for Pacific halibut. For explanation see text. 

name df ss ms F p 

total 41 1.6440 
proportional line 41 7.0531 
Cushing 40 1.6107 0 0403 0.83 0.369 
Ricker 40 1.9916 0.0498 
Saila-Lorda 39 1.3414 0.0344 4.40 0.019 
Beverton-Holt 40 1.5849 0.0396 
Shepherd 39 1.5023 0.0385 
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TABLE 7 
Summary of analyses of other flatfish stocks (null model of constant recruitment). YC--year class. 

species stock 
Greenland halibut Arctic 

Greenland halibut Faroes 
megrim Atlantic 
plaice Skagerrak 

plaice E. English Channel 
plaice Celtic Sea 
plaice Irish Sea 
sole North Sea 

sole E. English Channel 
sole W. English Channel 

sole Celtic Sea 
sole Irish Sea 

sole Biscay 
yellowtail S. New England 
yellowtail George's Bank 
American plaice E. North America 
Summer flounder E. North America 

R increasing significantly with S (p=0.032 for Cushing) 
Ricker worse than Cushing, Beverton-Holt and Shepherd little better, Saila-Lorda 
inadmissible 
No fitting attempted. Large variation in S around trend line 
No plausible relationship. One high outlier (1988 YC) 
R decreasing significantly with increasing S (p=0.002 for Cushing). Ricker worse 
than Cushing, others inadmissible 
No plausible relationship - One high outlier (1985 YC) 
No plausible relationship - No outliers 
No plausible relationship - No outliers 
No plausible relationship. Three high outliers (1958, 1963, 1987 YC's) one low 
outlier (1978 YC). Two influential YC's (1961,1962). R negatively related to March 
temperature at den Helder, but outliers not explained. 
No plausible relationship. One low outlier (1987 YC) 
R increasing significantly with S (p = 0.023 for Cushing). Others little better than 
Cushing, Saila-Lorda inadmissible 
No plausible relationship. One high outlier (1982 YC) one low outlier (1985 YC) 
R decreasing significantly with increasing S (p = 0.010 for Cushing). Ricker worse 
than Cushing. Others inadmissible 
No plausible relationship 
No plausible relationship. One high outlier (1980 YC) 
No plausible relationship. One low outlier (1989 YC) 
No plausible relationship. Some very high R at low S 
No plausible relationship. One low outlier (1988 YC) 

by external factors. For the Pacific halibut data it has 
not proved possible to identify an admissible stock- 
recruitment relationship after the periodic component 
was removed from the recruitment data. 

7.4. OTHER POPULATIONS 

There is insufficient space to describe here detailed 
analyses for the other flatfish stocks for which data 
are available, but an outline of the findings completes 
the picture of this survey of recruitment in flatfish pop- 
ulations. Fig. 1 gives the stock-recruitment diagrams 
for all these stocks, together with the fitted stock- 
recruitment curve and confidence bands where such 
a curve can be identified. In Table 8 some values of 
fitted parameters and standard errors are given with a 
brief summary of the results of the procedures out- 

lined in this review in Table 7 for testing a stock- 
recruitment relationship against the null model of con- 
stant recruitment. 

In a further four out of the 20 stocks for which data 
are available some form of statistically significant 
relationship could be detected, using the traditional 
value of a significance level of 0.05 as the criterion for 
statistical significance. Of the 20 stocks, only in 11 
cases were 15 or more pairs of data available and in 
5 of these 11 stocks a statistically significant stock- 
recruitment-relationship had been identified. It is 
therefore generally in the stocks for which few data 
are available that a relationship has not been shown 
to exist. In several of the other data sets for which 
stock-recruitment relationships have not been identi- 
fied, the omission of one or two extreme outliers, usu- 
ally with exceptionally high recruitment, would enable 

TABLE 8 
Parameters and standard errors in best-fitting admissible stock-recruitment relationships. 

species 
Greenland halibut 
plaice 
plaice 
plaice 
sole 
sole 

stock fittedcurve In~ SE In& ~ SE [~]  ~ SE [~] 
Arctic Cushing 2.799 0.220 - - 0.114 0.049 
North Sea Ricker 2.150 0.490 0.0052 0.0013 - 
SkagerraldKattegat Ricker 2.558 0.358 0.0602 0.0092 - 
western English Channel Saila-Lorda 3.123 0.782 2.622 1 . 0 5 1  5.890 2.172 
western English Channel Cushing 0.702 0.294 0.587 0.239 
Irish Sea Ricker 2.989 0.666 0.507 0.122 - 



416 T.C. ILES 

TABLE 9 
Statistics for testing of stock-recruitment relationships. *The suggestion here of a model of constant recruitment independent 
of stocks is not intended to imply that this relationship can be extrapolated beyond the observed stock levels. It is an inadmis- 
sible relationship (see text). All the other suggested relationships are admissible, n is the number of deviations. SRR is stock- 
recruitment relationship. 

error sum of squares F-tests 

species stock n proportional constant Cushing other prop. line vs suggested 
line recruitment SRR Cushing SRR* 

F P 
halibut Pacific 42 7.053 1.644 1.611 t35.15 <.0005 constant 
Greenland halibut Arctic 19 2.851 0.183 0.139 332.54 <.0005 Cushing 
Greenland halibut Faroes 11 No fitting attempted. Large variation in S around trend line 
megrim Atlantic 7 0.899 0.515 0.377 6.93 .039 constant 
plaice North Sea 33 7.725 5.733 5.081 5.083 16.13 <.0005 Ricker 
plaice Skagerrak/Kattegat 12 5.880 2.412 0.854 1.119 58.85 <.0005 Ricker 
plaice E. English Channel 11 1.865 1.308 1.348 - 3.83 .082 constant? 
plaice W. English Channel 15 3.768 3.892 3.416 2.250 1.34 .268 Saila-Lorda 
plaice Celtic Sea 14 5.362 3.625 3.602 - 5.87 .032 constant 
plaice Irish Sea 26 6.864 2.823 2.705 - 36.90 <.0005 constant 
sole North Sea 34 32.344 22.028 21.761 - 15.56 <.0005 constant 
sole E. English Channel 11 1.154 0.916 0.911 2.41 .055 constant? 
sole W. English Channel 22 2.864 3.245 2.490 3.00 .099 Cushing 
sole Celtic Sea 19 2.755 1.030 0.891 35.54 <.0005 constant 
sole Irish Sea 19 11.654 7.683 5.125 5.775 21.65 <.0005 Ricker 
sole Biscay 11 0.387 0.100 0.091 29.09 <.0005 constant 
yellowtail flounder S. New England 17 38.036 22.038 20.341 13.05 .003 constant 
yellowtail flounder George's Bank 17 18.045 18.417 16.040 1.88 .191 ? 
American plaice E. North America 11 10.311 1.810 1.344 60.06 <.0005 constant 
summer flounder E. North America 9 2.510 2.199 2.045 1.59 .248 ? 

statistically significant curves to be fitted. On the other 
hand there were other cases, notably the North Sea 
plaice data, where one or two years with high stock 
levels caused the relationship to be significant. In this 
review all available data have been included in the 
analysis, and neither outliers nor lever points have 
been omitted in identifying the best-fitting curves. 

In showing that the six stock-recruitment relation- 
ships described above were statistically significant, 
the models were tested against the null model of con- 
stant recruitment, independent of stock size. Such a 
model implies a degree of density dependence, with 
strong compensation giving a stable average recruit- 
ment even at lower levels of stock size. It is an inad- 
missable stock-recruitment relationship in the sense 
discussed because it assumes positive recruitment 
when stocks are zero. The null model of no density 
dependence is one of recruitment proportional to 
stock size (R = o~S) and it is appropriate also to test 
this model as a null hypothesis. 

Table 9 summarizes the statistical evidence for and 
against the different types of model. Error sums of 
squares are tabulated for the models of a proportional 
line, constant recruitment and the best-fitting Cush- 
ing's equation. For those stocks where a form of 
stock-recruitment curve other than one of these three 
had been identified as the appropriate model the error 

sum of squares of this model is also tabulated. The F- 
statistic and associated p-value are given for testing 
Cushing's model against the null hypothesis of a pro- 
portional line. No formal test statistics have been tab- 
ulated for a comparison of the proportional line with 
the model of constant recruitment since they are non- 
nested models. 

The statistics in Table 9 indicate that in eight cases 
(Pacific halibut; Celtic Sea and Irish Sea plaice; North 
Sea, Celtic Sea and Biscay sole; Southern New Eng- 
land yellowtail flounder and Eastern North American 
American plaice) the hypothesis of a proportional line 
was rejected in favour of Cushing's equation (with p < 
0.05), and the error sum of squares for the model of 
constant recruitment was similar to that of Cushing's 
equation. Since for these cases the error sum of 
squares for Cushing's equation was not significantly 
smaller than that of constant recruitment, the indi- 
cated model for these stocks was one of constant 
recruitment over the range of observed stock size. 
This was an inadmissable model, and it cannot be 
assumed that the same level of recruitment would be 
observed were stock levels to fall below or rise above 
those observed in the past. In two further cases 
(Atlantic megrim and eastern English Channel plaice) 
the error sum of squares for the model of constant 
recruitment was somewhat less than that of the pro- 
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portional line, but the difference was not so large that 
the former model was strongly indicated. Finally, in 
the cases of the George's Bank yellowtail flounder 
and the eastern North American summer flounder, 
there was little to choose between the two models. 

8. DISCUSSION 

The identification of plausible stock-recruitment rela- 
tionships differing from the null model of constant 
recruitment in as many as six of the 20 stocks for 
which data are available is strong evidence that the 
general hypothesis that recruitment is not related to 
stock size should be rejected. Further evidence for 
the presence of some form of stock-recruitment rela- 
tionship is the indication that in at least eight further 
stocks a model of recruitment varying about a con- 
stant level independent of stocks is preferred to a 
model of recruitment directly proportional to stocks. 
Recruitment is bound to be zero at zero stock size, so 
the model of constant recruitment is inadmissible 
over all stock sizes. Thus where such a model is indi- 
cated as the most satisfactory one over the observed 
range of stocks, there is bound to be some form of 
underlying stock-recruitment relationship. The failure 
to identify this relationship could either be because 
changes in recruitment would only become apparent 
outside of the observed range of stock size, or extra- 
neous causes of variability have affected recruitment 
and have not been allowed for in fitting the relation- 
ship. 

Only limited data were available to the author on 
biologically justifiable environmental variables that 
might be included in the stock-recruitment relation- 
ship in the hope of explaining the variation in recruit- 
ment. In one case, the North Sea plaice stock, one of 
these environmental variables, February tempera- 
ture, significantly improves the stock-recruitment rela- 
tionship, and goes some way in explaining the 
outliers. For the sole stock in the same area it is the 
March temperature that is most closely correlated 
with recruitment but this variable does not signifi- 
cantly improve the stock-recruitment relationship, and 
indeed no admissible relationship can be found for 
this stock with the data available. Rijnsdorp et aL 
(1991) have, however, pointed out that for this stock 
the low recruitment of the 1961, 1962 and 1978 year 
classes could be related to the severe winters of 1963 
and 1979. 

Beverton & lies (1992b) reported some investiga- 
tions of some non-pleuronectiform stocks and these 
findings will be published elsewhere. Many other 
authors have reported stock-recruitment relationships 
and the general rule would appear to be that recruit- 
ment decreases at low stock size or approaches an 
asymptotic value at high S. There are notable excep- 
tions, in particular the dome shaped relationships in 
the stock of Windermere perch in north-western Eng- 
land (Mills & Hurley, 1990), and for migratory trout in 

a river in the same area (Elliott, 1984). It is striking 
amongst the flatfish stocks considered here that one 
stock, the western English Channel plaice, shows a 
definite dome and four of the others indicate the pos- 
sibility that they are the right-hand arm of such a 
domed relationship. It is also striking that in at least 
eight further cases, recruitment varies about a level 
that is independent of the stock size. 

This finding for flatfish stocks may seem to conflict 
with an earlier investigation of flatfish stocks (Bever- 
ton & lies, 1992a). It was shown, by establishing a 
relationship between the mortality rates in 0-group 
plaice and the logarithm of the maximum number of 
fish in the 0-group population as an index of abun- 
dance, that mortality is density-dependent. Beverton 
& lies (1992a) went on to suggest that this relation- 
ship is consistent with a Cushing type of stock-recruit- 
ment relationship, but should not be generalized to 
the stock-recruitment relationship for the adult stock. 
There is in any case considerable variation about the 
mortality/abundance relationship of the earlier paper 
so a domed form of stock-recruitment relationship 
may be consistent with that earlier work. 

This review has shown that the direct approach to 
stock-recruitment relationships has potential value 
despite all the doubts that have been expressed 
about the process. The value of statistical models is 
that a plausible curve can be fitted to the data and 
justified by formal statistical tests. Perhaps more 
importantly the degree of uncertainty in the model can 
be expressed by calculating the confidence bands for 
the fitted curve. Fargo (1994) gave another similar 
approach to the investigation of stock and recruitment 
simultaneous with environmental effects. His analy- 
sis, using a response surface method, has the advan- 
tage of flexibility but the disadvantage that the fitted 
model is purely empirical. The stock-recruitment mod- 
els used in this review have some basis in the theory 
of fisheries population dynamics (Harris, 1975; Roth- 
schild, 1986). Fargo's (1994) approach would be val- 
uable for a preliminary investigation to determine if 
further work should be done to identify a particular 
type of stock-recruitment relationship using the meth- 
ods outlined in this review. 

Another method of analysis that has been sug- 
gested for stock and recruitment data is the time 
series approach of integrated auto-regressive moving 
average (ARIMA) models (Box & Jenkins, 1970). 
Such methods are useful for the purposes of forecast- 
ing of future stocks, and perhaps recruits. Kirkley et 
aL (1982) give a typical application of the approach in 
fisheries research. Although these methods are very 
flexible and are designed to model the autocorrelation 
structure of the data, they do not incorporate a stock- 
recruitment relationship of the form discussed in this 
review and do not describe the structure of the rela- 
tionship between stock and recruitment. Knowledge 
of the time dependence of stock and recruitment data 
may, however, assist the interpretation of data. 
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Because the dynamics of fish stocks are subject to 
changes in time, particularly due to fishing pressure 
but perhaps also pollution and other environmental 
effects, it may be the case that a particular stock will 
exhibit different stock-recruitment relationships over 
different periods of time. By looking at the sequence 
of data in time it may be possible to identify when 
such changes occur and it might be useful to include 
the numbers indicating the year classes on the stock- 
recruitment diagram. 
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APPENDIX 1 

FII-IING A LINE OF CONSTANT PROPORTIONALITY TO THE LOGARITHMS OF RECRUITMENT 

The line of constant proportionality is 

R= coS 

After logarithmic transformation and inclusion of the random component this becomes 

InR =Incc + InS+ ~. 

The least squares estimate of Incc is the value that minimizes 

.~.~2 = Z(InR- Inc~ - InS) 2 
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that is, 

In~ =lnR4nS 
m 

where InR and InS denote respectively the mean of the logarithms of R and S. When retransformed by exponentiation this 
gives the line passing through the geometric mean of the data with slope unity. Regression is not needed to fit the equation 
to data, the parameters are completely determined by the means of InR and of InS. The model has one parameter, so the 
error or residual sum of squares, calculated from the formula 

]E(In R - In--'R- InS + I'~S) 2 

has n-1 degrees of freedom, where n is the number of data points. 
If the random component of the stock-recruitment relationship is normally distributed with constant variance for R, and not 

InR, then the least squares fit is obtained by linear regression of R on S with the intercept term (usually referred to as the 
constant) excluded from the model. Most statistical packages have an option for doing this. 

APPENDIX 2 

FITTING THE RICKER MODEL USING SIMPLE LINEAR REGRESSION 

Suppose that the random components of the model are independent and normally distributed with constant variance for the 
logarithms of R. The Ricker model, after logarithmic transformation is 

InR -- In(z - 13S + InS + E(1 ) 

The maximum likelihood estimates of the parameters are those that minimize ,~:2 or  

T.(In R-In(z+13S-ln S) 2 

]E(In R/S-ln o~+13b--') 2 

and these are the estimates obtained by regressing InR/S on S, in which the underlying model is 

In R/S = In c~ - 13S + ~(2) 

Thus the estimates of the parameters obtained from this regression are unbiased, as shown by Hilborn (1985). Since the 
residuals from model (2) coincide with those of model (1), the residual sum of squares and calculated residuals from the sim- 
ple linear regression of InR/S on S are also correct, and are identical with those that would be obtained from a non-linear 
regression fit using model (2) (excepting possibly for rounding error). The error mean square is thus the correct estimate of 
the variance o 2 of the random component ~ of the model. The theoretical variance of the estimate of 13 is o21S(S,S) where 
S(S,S) =~(S-S) 2 is the corrected sum of squares of the observed values of S, and this is also identical for both models. Sim- 
ilarly the theoretical variance of (~ is the same in both cases. Thus the confidence intervals for the parameters are also cor- 
rectly calculated by a simple linear regression of InR/S on S, but these in some cases may be misleading for a reason 
discussed below. 

It is important to note, however, that the total sum of squares from model (2) T.(InR/S-lnR/S) 2 is not the same as that of 
2 model (1) ~(InR-I"n--R) Hence the regression sum of squares from the simple linear regression of InR/S on S is incorrect and 

2 the coefficient of determination R calculated from this regression has no meaning and may be very misleading if interpreted 
in the usual way, as discussed in section 5. In fact since the Ricker model does not allow the special case of a model that InR 
is constant, it is theoretically possible and sometimes happens in practice that the error sum of squares for the Ricker fit 
exceeds the sum of squares of deviations of the logarithms of recruitment R from the mean of the logarithms of R (the total 
sum of squares for InR). This is the reason why the R 2 statistic has no meaning. Ruppert & Carroll (1984) pointed out that 
R 2 values calculated from linearized versions of stock-recruitment curves should not be compared. In cases where a hori- 
zontal line has a smaller error sum of squares than the Ricker equation, the confidence interval calculated for the estimate of 
the parameter 13 is also liable to be misleading. It may indicate a value that is strongly significantly different from zero, but this 
is not for the null hypothesis that there is no relationship between stock and recruitment. Substitution of the value 13=0 in the 
Ricker equation gives as null model a line proportional to R 

R=~S. 

The total corrected sum of squares from the regression of In P,/S on S is the error sum of squares for this null model of a line 
proportional to R and passing through the geometric mean of the data. Hence the usual F test of this regression is a test of 
the Ricker equation against the null model of a proportional line. 


